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Abstract:

The paper discusses work completed at Cardinal River Coals in Canada to improve the
existing oil analysis condition-monitoring program being undertaken for wheel motors.

Oil analysis results from a fleet of 55 haul truck wheel motors were analyzed along with
their respective failures and repairs over a nine-year period. Detalled data cleaning
procedures were applied to prepare data for modeling. In addition, definitions of failure
and suspension were clarified depending on equipment condition at replacement. Using
the proportional-hazards model (PHM) approach, the key condition variables relating to
failures were found from among the 19 elements monitored, plus sediment and viscosity.
Those key variables were then incorporated into a decison model that provided an
unambiguous and optimal recommendation on whether to continue operating a wheel
motor or to remove it for overhaul on the basis of data obtained from an oil sample.

Wheel motor failure implied extensive planetary gear or sun gear damage necessitating
the replacement of one or more maor internal components in a general overhaul. The
decison model, when triggered by incoming data, provided both a recommendation
based on an optimal decision policy as well as an estimate of the unit's remaining useful
life (RUL). By optimizing the times of repair as a function both of age and condition data
a 20-30% potential savings in overhaul costs over existing practice was identified.

Keywords: Whedl motors, Condition monitoring, Oil analysis, Proportional-hazards
modeling, Optimizing conditionbased maintenance decisions, EXAKT software

Practical Implications. Current practice for monitoring the health of items is through
examining trends in readings obtained from various forms of condition monitoring.
Interpretation of these readings is undertaken by an inspector reviewing current and past
readings, or through using commercially available trending software. Such an approach
does not guarantee that the full informationvalue contained in the readings is captured.
The paper uses a statistical procedure called proportional- hazards modeling to identify
the key measurements that should be used to assess the true state of health of the
equipment. Economic decision rules are then established. The procedure is described



through a case study that reports on the optimization of conditionbased maintenance
decisions for haul truck wheel motors that are monitored through oil analysis.
Application of the procedure demonstrated a 20-30% potential savings in overhaul costs
compared to current practice.

This paper underlines the importance of data cleaning and applying a consistent
definition of failure based on both the observed equipment condition at repair time and
the inability of the equipment to perform its functions. (for additional discussion see
Campbell and Jardine 2001).

INTRODUCTION

Cardinal River Coals Ltd. is a 50/50 joint venture between Luscar Ltd. and Consol of
Canada, Inc. The mine is located approximately 50 km south of Hinton, Alberta on the
eastern dopes of the Rocky Mountains. The coal produced from the mine is low sulphur,
high quality coking coa used for steel making. Cardina River Coals Ltd. opened in
1970 as a multiple open pit mine using the truck and shovel mining method. Current
annual production at the mine calls for the removal of 21 million cubic metres of rock
and 2.8 million tonnes of coa. The mine has won multiple awards for the land
reclamation and creating wildlife habitat.

There are 26 haul trucks at the mine site, each having two wheel motors. With 3 spare
wheel motors the fleet numbers 55.The existing policy, based on experience, is to rebuild
the units after about 20,000 hours of operation. QOil analysis is carried out monthly
whereby the amount of sediment (weight of filter patch filtrate) and parts per million
(ppm) of five out of the nineteen elements are noted: iron, silicon, chrome, nickel, and
titanium. The decision to remove the unit for rebuild is based on manua perusal of the
values of these elements in combination with the unit's age.

Wheel motor failures relating to the electrical drive elements and breaking system were
not included in this study since their condition is not reflected by oil analysis data. Seal
replacements were carried out frequently as a result of high contamination and coincided
with oil changeouts. The oil changeout event (OC) is considered as a“minor” repair. The
analysis iows that a high amount of sediment persisting inspite of these corrective
measures, is associated with a high risk of failure.

Statistical analysis of the CRC wheel-motor data showed a high correlation between iron
and silicon. That fact would support the view that there are a high number of failures
which are contaminant induced. Hence one may conclude that there is an event or set of
conditions that initiate a process of deterioration in the wheel motor. It is assumed that by
overhauling the unit before the damage becomes more extensive one would benefit from
savings through failure avoidance.



DATA AVAILABILITY

Within the mine's computer maintenance management system (CMMYS) there were
histories of wheel motor lifetimes, including details of removals due to failure or
preventive maintenance as a result of interpretation of the signals obtained from oail
analysis. Costs associated with the failure and preventive removals were also available.
Additionally, there was a database containing a vast history of condition monitoring test
results — some 50,000 records.

It may seem that it would be an easy matter to peruse and study these two data sources
and learn which patterns of data have been associated with past failure, thus identifying
the data combinations that might be employed as condition indicators of future failures.
Unfortunately identification of the key condition indicators from amongst al the data
collected is seldom obvious to the analyst. The complexity, volume, and time lags within
the data render them elusive if not impossible to discern without the proper tools.

In this paper we show a tool that uses a datistical modeling technique known as
proportional-hazards modeling to bridge these two invaluable data sources. It is the
central function in a program called EXAKT developed precisely for this purpose by the
condition based maintenance (CBM) laboratory at the University of Toronto (see Jardine
et a, 1997).

MODEL BUILDING
The Proportional-hazards M odel

A valuable statistical procedue to estimate the risk of equipment failing when it is
subject to condition monitoring is the proportional hazards model (PHM)(Cox, 1972).
The form of the PHM is:
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where h(t) is the (instantaneous) conditional probability of failure at time t, also known as the hazard
function, given the values of Z,(t),Z,(t),...,Z,.(t). Each Z (t) in equation (1) represents a
monitored condition data item at the time of inspection, t, such as the parts per million of

iron or the vibration amplitude at the second harmonic of shaft rotation. These condition
data are called covariates.

The g's are the covariate parameters indicating the degree of influence each covariate has
on the hazard function. The model consists of two parts, the first part is a baseline hazard
.b-1

function that takes into account the age of the equipment at time of inspection, %E%E
a



and the second part, e»#:®*9:2**mn(t) takes into account the key variables and their
associated weights.

Data Cleaning Related to Wheel Motor Event Records

The first step in every proportional hazard model (PHM) building exercise is a thorough
examination of the data. The data-cleaning phase of PHM is considered the most
important one of the entire modeling process. If we are to accomplish our objective of
accurate and automated CBM data interpretation, the data upon which we intend to build
the model must be as free of error asis possible. Much of this paper, therefore, focuses on
the data investigative or cleansing phase of model building.

Fortunately software provides us with ample tools with which to “cleanse’ the data. In
Figure 1 we show a feature of the EXAKT software (2) that discovers many logica data
inconsistencies emanating from the CMMS, thereby helping the analyst to make the
corrections that will improve the ultimate model’s precision.

DataCheck ]|

Ident Drate ‘wiorkingdge| Event D escription
b |5B01L 4 9/13/99 FaE40(IM Check whether thiz history iz temporary suspended or "EF/ES" iz migzing,

5E01R 4 9/13/99 FaE40(IM Check whether thiz history iz temporary suspended or "EF/ES" iz migzing,
5R0ZL 4 9/20/99 83958 |IM Check whether thiz history iz temporary suspended or "EF/ES" iz mizzing,
5R0ZR 3 9/20/99 83958 |IM Check whether thiz history iz temporary suspended or "EF/ES" iz mizzing,
5R03R 2 E/03/94 E4858|IM Thiz record has the zame 'wihge as the previous record: 1d=5503R 2, Date=6/03/94, Wihge=£4858
5R03R 3 8/02/94 ERE34 | IM Thiz record has the zame 'wihge as the previous record: 1d=5503R 3, Date=7/31/94, Wihge=EhE34
5R04L 5 8/30/99 F7AT3(IM Check whether thiz history iz temporary suspended or "EF/ES" iz mizzing,
5A04R 4 8/30/99 FFAT3IN Check whether thiz history iz temporary suspended or "EF/ES" iz mizzing,
5R05L 3 10/12/99 86325(IM Check whether thiz history iz temporary suspended or "EF/ES" iz mizzing,
5R05R & 10/12/99 863251 Check whether thiz history is temporary suspended or "EF/ES" iz migsing.
BR0EL 3 2/01/99 82194 |IM Check whether thiz history is temporary suspended or "EF/ES" iz migsing.
BR0ER 3 2/01/99 82194 |IM Check whether thiz history is temporary suspended or "EF/ES" iz migsing.
5R08L 2 7/09/95 59336|0C Check whether thiz history is temporary suspended or "EF/ES" iz migsing.
5R08L 2 7/09/95 59336|0C The first Event of this histary is not a "B"' event.
5R08L 4 a8/27MAa7 ER926|IM Thiz record has the zame Wage a3 the previous record: |d=5508L 4, Date=8/27/97, ‘Wage=6892E,
5R08L 5 5/26/99 F4775(IN Check whether thiz history is temporary suspended or "EF/ES" iz migsing.
BR03R 3 a8/27Aa7 E2926|IM Thiz record has the zame Wage a3 the previous record: |d=5508R 3, Date=8/27/97, Whge=E8326
BR03R & 31899 FARO7 | IM Check whether thiz histony is termporary suspended or "EF/ES" iz mizzing.
5R09L 4 1041299 4111 |IM Check whether thiz history is temporary suspended or "EF/ES" is mizsing.
5509R 3 1041299 4111 |IM Check whether thiz history is temporary suspended or "EF/ES" is mizsing.
BE10L 4 9/28/99 FH97|IM Check whether thiz history is temparary suspended or "EF/ES" iz missing.
B510R 3 9/28/99 FH97|IM Check whether thiz history is temparary suspended or "EF/ES" iz missing.
BE11L 4 10/06/93 Fages| M Check whether thiz history is temparary suspended or "EF/ES" iz missing.
5R11R B 10/06/99 TRARE|IM Check whether thiz history is temparary suspended or "EF/ES" iz mizsing.
BR12L 3 10/08/93 92093 (IM Check whether thiz history is temparary suspended or "EF/ES" iz mizsing.
AA12R 4 10/08/99 92093 (I Check whether thiz history iz temporary suspended or "EF/ES" iz missing.

Takein Figure 1 Data Checking Tool

Data required for PHM analysis consists of "histories’. Each valid history for a wheel
motor must have a Beginning event (B), an Ending event (EF for failure, or ES for
suspension (such as a preventive removal)) and Inspection events. A discussion of how
suspensions and failures were determined is given later in this paper. A history could also
have events that are known to affect covariates, such as il change (OC) events.

The output of the data - checking tool (illustrated on Figure 1) points out probable errors
based on a systematic evaluation of working ages and corresponding calendar dates as
reported in the CMMS. Thus it is seen that the software deduces, from the dates and
working ages, the sets of data that comprise individual histories. For each history that it
finds without an ending, it asks whether the ending event should be designated as a



suspension (ES), a temporary suspension (TS, which is denoted by *ES in the software)
or afallure (EF). (Note: Temporary suspension means the age of the operating item at the
time of the data analysis. In the future, TS will convert to an ES or EF event.)

The software also points out anomalies that may indicate data problems such as two
inspections on the same day, or working ages and calendar dates which are out of
synchronization relative to the previous and next records. All of these errors would have
compromised the model’ s accuracy.

Most of these types of errors can easily be corrected by inserting the missing Beginning
and Ending events for each history.

Data Cleaning Related to Wheel Motor Condition M onitoring Records

Examination of the records obtained at oil analysis can be examined graphically in many
ways using various combinations of covariates, dates, ranges, and scales. For example,
while exploring the covariates, statistically unusual values of silicon forming a horizontal
line at exactly 900 parts per million (PPM) were noted (Figure 2).
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Takein Figure 2 Graphical Analysis of Inspection Records

Investigating with the commercial laboratory it was found that for a period of time the
photo-multiplier tube on the spectrometer was saturating at exactly 900 PPM. In other
words al values of silicon above 900 were truncated to 900 PPM. A similar situation
occurred for iron above 2500 PPM. If not detected, this could play havoc with the
building of the PHM.

Knowing the errors in the laboratory test data it was possible to compensate for them in
the database used to build the model. For example, to correct the truncated values of ‘S’
they were replaced with 1.2 x Fe. The factor of 1.2 was determined from the initial slope
of the cross graph (a correlation graph) of Fe-Si and values obtained after the saturation



defect was corrected. The truncated Fe values were not corrected since there were too
few of them to influence the moddl.

The correction applied to the Si valuesisillustrated in Figure 3.
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Takein Figure 3 Corrected Silicon

Cross graphs of pairs of covariates are invaluable in finding correlations that are of great
help in developing and evaluating the eventual model.

Figure 4 shows the correlation between iron (Fe) and nickel (Ni). Correlations between
other covariates were aso tested. For example, Fe vs Ti, Fe vs Si and Ni vs Ti graphs all
exhibited similar correlation.

Determining correlation between covariates is useful both to provide insight into the data,
and in understanding the models generated by the software. For example, if ‘Fe’ and “Ni”
are highly correlated the modeling process would indicate hat there is no point in
including nickel in the model since it has been determined to provide no additional
information regarding the probability of failure. Thus, if the software concludes that
nickel is “insignificant”, then by inspecting the correlation graphs one could therefore
understand the reasonableness of such an indication. These correlations are the result of
wear of a metallic aloy component present in the unit.
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Takein Figure4 Correlating Iron and Nickel

Data Cleaning Related to Wheel Motor Oil Changes

When building the PHM it is necessary that when the inspection records are analyzed that
account is taken of any minor maintenance work that is done, such as changing the oil in
the wheel motor. For example, Figure 5 illustrates that the actual transition path of oil
measurements was from A to B to C to D. If we did not account for the oil change, then
the modeling process would assume that the transition was A to B to D. This would be
misleading and would tend to overestimate the risk of failure.
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Takein Figure 5 Oil Changes

In the EXAKT data preparation phase, the model is told what covariate values should be
associated with those minor corrective events, such as an oil change (OC).

Figure 6 shows ‘missing’ or ‘irregular’ oil changes and obvious gaps. Oil ages of 7000-
8000 hours are indicated which is quite unlikely with the use of minera oils in this
application. The site changed to synthetics about two years earlier to eliminate the need



for regular oil changes. However most histories, containing missing oil changes, occurred
prior t01997. It was thought that this information needed to be recovered from the
commercial laboratory’s files. Unfortunately these files, too, were incomplete and
inconsistent with the dates and working ages in the work order database.

[5501L 1 =

|dent Date] Workingtoge| HM| F|Ewent PrevSedl| CormSedl|{ PrevSed?| ConSed| LogSed
Ba01R | 194101993 h27e 1) 0) 10 470 10 47009401642
Ba01R | O6A11/1993 53048 1) 0) 470 950 470 80| 06254539/
BE0R 06/11/1993 h3043 11 1/0C 350 10 350 10[27279337
BA01R | 2141141993 53295 1 0] 10 1605 10 1605|39450671 |
Ba01R | 05M12/1993 53538 1) 0) 1605 2600 1605 2B00| 26544865(:
Ba01R | 0RM12/1993 53638 1| 1/0C 2600 10 2600 10[27279837
SA01R | 2740341934 54028 1 0)F 10 1575 10 1575|2704 732
BA01R | 1340441994 54311 1 0] 1575 2015 1575 2015|629191 26(.
Ba01R | 1740441994 54329.75 1| 1/0C 25 .
EEOTR | 24/04/15934 BL7E] 1 0O 07 MlSSng ‘OC? events?
5A01R | 01/05/1934 54609 1 0)F 1565 15433 THER TR 314707750
BR01R | 17/05/1994 54839 1 0] 15433 545 15433 54597574491 |
SEMA | 0940641334 55103 1 0 / 545 150 545 130|42804663|
Ba01R | 17/06/1994 55181 1| 1/0C 190 10 140 10[27279837
BR0TR | 26/06/1994 BRA7Y 1) 0] 10 455 10 48580951439
BA01R | 26/06/1934 BEATY 1| 1/0C 455 10 455 10[27279837
5a01R | OBA07/1994 55529 1 "\( 10 530 10 53002124194
Ba01R | 13/07/1994 BEEET o= 530 430 R30 A480| 27010576
BA01R | OR/08/1994 Rea| A1) o[ 480 365 480 36533340137
BA01R | 21/08/1994 A6153 1 o+ | 365 280 365 28066933375
5a01R | 0640941994 5G451 1) 0) 280 h25 2a0 2R 21273FF )
Ba01R | 26/09/1994 BE7Z3 1) 0) 525 920 h25 920|03625531 |
BA0TR | 124101994 57005 1) 0] 920 2R 920 BR0|R0442773):
BA01R | 03411/1994 grang) W] o f a0 G40 R0 B40| 45692067 |
Ba01R | 214111994 57hE3 T 0[5 G40 920 540 920|0362553 |:
Ba01R | 21/11/1994 57RE3 1 oc 920 10 920 10[27279837
BE0R 11/12/1994 h7828 1 0 10 720 10 720|113723495(:

JEEMR L 2341241994 ha046 1l 0l 20 TR el VRO 357A6163):

Takein Figure 6 Missing Oil Change Events

Happily, it was determined that these 'missing’ oil changes did not significantly affect the
model since they were relatively few in number with respect to al of the known oail

changes. That is, there were a sufficient number of known oil changes in the database for
the model to account for their effect on the measured data.

Building the Proportional Hazards Model (PHM)

After al the obvious data errors were eliminated or corrected, the proportional hazard
model was generated. As illustrated in equation 1, the hazard function is the risk of
failure of an unfailed unit at a given point in time. It is a function of both working age
and the “significant” condition data. By following the iterative procedure in the EXAKT
software, which is based on Cox (1972), the insignificant covariates are removed to
arrive at some potential models. Those models are then tested to see how well they
represent the actual data. One of the methods used by the software is known as residual
graphical analysis.
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Takein Figure 7 Residual Graph

Each point on the residual graph of Figure 7 represents a history, namely the time from
wheel motor installation to its removal. The sample used to build the model consists of
many histories. The graph shows an unusual point that is well above the 95% upper limit.
This leads one to investigate the underlying data corresponding to this residua. It was
discovered that some ‘unusua’ data were included in that history which appear to violate
the model we are attempting to build.

The unusua residua value was identified as corresponding to one history from wheel
motor 5509R, with beginning event at 48900 hrs and EF (ending with failure) event at
72005 hrs.

The ‘offending’ datais shown on Figure 8



No events support this
jump in values

Ident Date ‘Wworking®ge Al JCr Cu Fe N[ Ti Fb Si
FE09R 202394 E2926 7 i 1 27 a 1 1] 56
FE09R /0894 E3171 il /S0 2 43 a i i 53
FE09R 2794 E3443 16l /0 2 53 a i 1 a5
FE09R 4/15./94 E3733 W] 2 37 a 1 1 133
FE09R B/07./94 E4003 3

FE09R 51394 Ed244 1

FE09R 5./30,/94 E45| 5 1890 17 K]l a

FE09R E/E/94 5 900 17 10 2500 40 47 12

FE09R FA05/94 g E5023 573 12 g 2500 29 28 8

B509R 719,94 & ER2eg 572 11 g 2500 Kl 26 7

5509R 8/07/94 E5497 226 g 4 1509 16 12 5

5509R 8/21/94 E5533 236 4 4 1003 g 12 4

5509R 9/08./94 E5804 56 1 1 415 3 3 1

5509R 972394 EE252 a3 3 1 581 G E 2

5509R 1012794 EESE1 il 2 1 445 2 g 1

BE0SR 10/23/94 ALY EE7A0 32 2 1 554 4 b 1

BE0SR 1112794 "W, FE993 17 ] 1 24K 1 3 I

BE0SR 11./30/94 34 25 2 1 430 ] A 1

RE09R 12/23/34 EY 24 1 2 321 3 3 2 i
FE09R 1M11/95 E7E85 i 2 111 a 1 -
FE09R 1/26/95 E3102 5 i 71
FE09R 2/09/95 B350 11 i 1 1583 a 1 1 1
FE09R 22795 E2E24 7 i 1 103 1 1 1 50
FE09R AM2M95 E8553 a i i 144 a 1 1 a0
FE09R 4/29/95 E3174 13 1 i 280 2 1 3 114
FE09R 5/M0/95 E93E5 15 3 1 345 5 1 4 127
FE09R R/29/95 E9ERG 7 1 1 127 3 2 2 50
FE09R E/13/95 F3944 10 i 1 23R 1 3 1 106
5509R TAN2M95 o415 G ] 1 177 1 1 1 ]
5509R 8/14/95 0963 4 ] 1 108 1 1 1 47
RRMSR 9414./95 F14R7 2 n n 7 n n n AR

Takein Figure 8 Investigating the strangeness

The Fe valuesin the left-circled region of Figure 8 have an inexplicable pattern. Fe jumps
to high vaues, but truncated at 2500 PPM due to instrument saturation, and remains in
the same range for a few more inspections. Then, the readings fall back to low values. No
events were recorded to explain these sudden jumps.

Having no event data to support such high values of Fe and Si, the modd was
regenerated and the fit tested again after removing that history from the working data set.
Statistical and graphical goodness-of-fit testing procedures are applied by the software as
part of the modeling procedure. The model’s fit to the data improved immediately. The
model building algorithms no longer had to accommodate obviously contradictory and
misleading information

The forgoing describes data problems which were encountered and which were relatively
easy to correct using the statistical and graphical tools available in the software’' s
functionality.

However a different (and more fundamental) problem occurred regarding the definition
of wheel motor failure. These units seldom failed “functionally”. Being monitored
monthly, there were few “in-service” failures requiring that a haul truck be removed
immediately from operation. Nevertheless the model required an objective determination
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that a unit had failed. To provide the event data to the model, it was necessary to go
through the past work order records to find the failures and the preventive removals.
Initidly, the tradesman remarks were used for this purpose, such as "High iron in oil
sample and high hours, removed and replaced wheel motor.” This event was then
classified asa“failure’. However, on reviewing the re-builder's report attached to each
invoice it became clear that some eventsinitially classified as a failure should be treated
as a suspension. For example: If the gears had been replaced because they failed an
ultrasonic test or they were obvioudly in afailed state then that would be classed as a
faillure. But if they were replaced ssimply because it was expedient to do so, or if the unit
was only generally rebuilt with no real internal damage, then that was considered a
suspension.

With the definition of suspension and of failure thus clarified, a proportional- hazards
model was found which was shown to be a “good fit”.

The model containing the covariates iron and sediments was found to be good, both by
graphical residual analysis and by the Kolmogorow-Smirnov statistical test applied
automatically by the software. The results of the analysis are displayed in Figure 9.
Covariate significance is tested by the Wald statistic, the square of the standardized
estimate of the parameter which follows a chi square distribution with 1 degree of
freedom. (Note: A few missing sediment values had been replaced by the values from
previous inspections prior to the analysis, hence the reason for using the notation CorrSed

inFig. 9). The PHM isthus:

.1.891
h('[) — 2891 g t 0 eo.002742Fe+o.00005395Sed

23360 &23360
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PHM Parameter Estimation
PHM_CRC (FeCorrSed{Opt3)) (Wheel Motors)

Summary of Events and Censored Values

Sample Size

Failed

Censored (Def]

Censored {Temp)

% Censored

175

S|

41

47

497

Summary of Estimated Farameters (based on ML method)

Parameter| Estimate |Sign.(¥) S‘E?:]arrd Wald [DF | p - Value EEt:.i;rI:laD:e o 9%l Upper
Scale  |[2.336e+H104 1057 2.129e+004 2.644e+004
Shape 2.891 ki 02652 | 4933 |1 1] 2363 3.419

Fe 0002742 00002274 [ 1454 |1 1] 1.003 0.002296 0.003188
CorrSed |5.395e-005 2476005 | 4747 | 1 | 002934 1 5.42e-006 0.0001025

™) Based on 5% significance level. Shape = 1 tested

, Gamma [Cov) = 0 tested.

Takein Figure 9 The Proportional Hazards M odel

Obtaining the Decision M odel

After determining the PHM we are ready to establish the optimal decision model (see
Jardine et al 1997) that incorporates economic considerations along with the risk estimate
obtained from the PHM. The decision policy was calculated with a cost ratio of 3:1
($20K for preventive replacement cost, $60K for failure replacement cost, based on the
invoices of past repairs by outside contractors). See Figure 10. The cost ratio will vary
amongst applications. It could include the costs associated with operational consequences
depending on current production and coal market conditions. The model includes the
effects of regular maintenance intervals (oil changes) at 500 hrs that occurred regularly
during most of the histories prior to the changeover to synthetic oil.




Optimal Replacement Age

10

A Don't replace before next inspection
B E:xpect to replace before next inspection
C Replace immediately

Composite Covariate Z
/

T T |L-‘--'_
0 s000 10000 15000 20000
Working Age [hr]
7 = 0.002742*Fe +5.3955e-005"CanrSed
Takein Figure 10 Decision Model Graph

A modéd calculated without including the oil change intervals would tend to
underestimate predicted failure times (Note: When data was used for estimation,
covariate values were set to zero on oil change, as defined in the CovariatesOnEvent
table. The PHM parameters and transition probabilities are then estimated from this
adjusted data. So, in the subsequent calculation of averages and costs, we have to take
into account that covariates will regularly have their values reduced. If not, covariates
will reach high values in the calculation process faster than in real data, and thus produce
a higher estimated risk of failure than is redlly the case).

At present the model does not attempt to optimize inspection frequency (a future research
feature), leaving the decision up to the user. It is to be noted that no operationa savings
were accounted for. This was due to the present unfavorable coal market conditions
causing the mine to operate below its capacity. It is expected that as market conditions
improve higher cost ratios would be used. Current strip ratios (total material removed
versus sellable material) would aso affect the savings associated with increased
availability and reliability of the units. Figure 11 demonstrates the sensitivity of the
overall savings to changes or inaccuracies in the cost ratio.
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Cost Sensitivity of Optimal Policy

100%: Optimal Cost
due to Cost Ratio =3

Ratio of Costs [%]

=== FRatio of Opt. Costs
Increase over Opt. Cost

'dl:l I I I T I I I
1 2 3 4 ) B 7 g o

Replacement Cost Ratio (C+K)IC

Fleplat:em_ent Optimal Hazard I_latiu of In[:n_aase Over
Cost Ratio Level Optimal Costs Dp_tlmal Cost
(C+K)/C [%4] Using ™ *, [%]

1 Mo Limit 4476 14712

2 0.000122139 80.43 103.04

WS 7. 16861 e-005 100.00 100.00

4 5.39354e-005 113.94 102.75

5 4. 26086e-005 126,55 105.57

B 3.87334e-005 135.05 111.595

7 3.50239e-005 14342 117.35

g8 3.13143e-005 15175 12213

5 2.76048e-005 160.15 126.41

Takein Figure 11 Sensitivity Testing

In real situations, the actual ratio of failure and preventive replacement costs may not be
well known. Furthermore the dynamics of industry are such that costs can change with
changing technology, production, and market conditions. Therefore one would like to
know, to what degree the true total cost per unit time and the optimal policy would
change with changes in cost ratio. The software enables sensitivity analysis to be
undertaken and generates a graph and corresponding tabular data, see Figure 11.

The curves on the graph are interpreted as follows. Solid Line: If the actual cost ratio

(CR) differs today from that specified when the model was built, that means that the
current policy (as dictated by the Optimal Replacement Graph of FHgure 10) may no
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longer be optimal. The line indicates the increase in percentages that will be incurred
above the optimal cost/unit time for the actual cost ratio by adhering to the current policy.
For example, if the actual cost ratio is 5 and we are using a model which is based on
CR=3, then the increase in the cost incurred by following that (wrong) policy is around
6% (5.98). In other words the solid line represents the sensitivity of costs to changes in
CR. Dashed Line: Again, assume the actual cost ratio has strayed from what was used
when the model was built. If the model is rebuilt using the new ratio the dashed line tells
how much the new optimal cost would differ from that of the original model. (Note that
the sensitivity graphs assume that only G (failure replacement cost) changes and G
(preventive replacement cost) remains unchanged.) In other words the dashed line
represents the sensitivity of the optimal policy to changes in CR. The graph indicates that
moderate overestimation of the cost ratio does not significantly affect the average long
run cost but provides a more conservative policy from the point of view of risk of failure.

_ Cost Preventive Failure Prev. Failure Expected
CR_3 [$/hr] Repl. Cost Repl. Cost Repl. Repl. | Time Between
j T eplacements
[$/hr] [$/hr] [%] [%] Repl
Cptimal 1.1047 116027
Palicy 226497 (458 %) (512 %) 741 258 134097
Replacement a 3.04139 o o
Only At Failure 3.04139 0.0 %) (100 %) 00% | 1000 % 197278
. 0776415 o o
Saving (25,5 %) -1.1047 1.88111 J41% | 741 % £318.13
Cost Preventive Failure Prev. Failure Expected
CR:S [$/hr] Repl. Cost Repl. Cost Repl. Repl. | Time Between
' y 1] eplacements
[$/hr] [$/hr] [%] [%4] Repl
Optirnal 160451 1.23537
Policy 2.83999 (56.5 %) (435 %) g6.7 13.3 10800.9
Replacement 0 506898 o o
Only At Failure 5.06395 0.0 %) (100 %) 00% | 1000 % 19727 .8
. 222899 o o
Saving (44.0 %) -1.60461 3.83361 G967 % | 887 % -3926.89
Cost Preventive Failure Prev. Failure Expected
CR=6 [$/hr] Repl. Cost Repl. Cost Repl. Repl. | Time Between
T j eplacements
[$/hr] [$/hr] [%] [%4] Repl
Optirnal 1.9303 1.12921
el 3.0585 631 %) (3.9 %) 91.1 8.9 9440.65
Replacement 1] B.08277 o o
Only At Failure B.03277 0.0 %) (100 %) 0% | 1000 % 19727 8
! 3.02327 o o
Saving (49.7 %) -1.9303 4 95357 1% | 811 % -10287 .2

Takein Figure 12 Potential Savings

The cost analysis summary shown on Figurel?2 indicates a saving of 25%, when CR=3,
over the “replace only on failure” (ROOF) policy, whose costs approximate those of the
site’s past policy.

Decision moddl results are also caculated for cost ratios of 5 and 6. As the cost ratio

increases we can observe an increase in both the optima policy cost as well as an
increase in savings. The optimal decision models in these cases indicate more frequent
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preventive replacements (from 74% to 91%) will result from applying the optimal
decision policy in order to avoid costly failures. (Note: There is a dight discrepancy
between the expected time between replacements for the ROOF policy, when CR=3 and
CR=5 and 6. Thisis due to the numerical calculation procedure.)

APPLICATION OF DECISION MODEL

Once the decision model was built (see Figure 10), data was examined from previous
histories to see what the decision model would have recommended for situations in which
the wheel motor failed. One illustration of such a history is shown in Figure 13. This
graph provides a recommended decision based on inspection data (covariates and
working age).

Replacement Decision

© 10 I I I
2L A Dont replace before next inspection
ﬂ 8 B Expect to replace before next inspection | |
n C Replace immediately
l
-
-
o
AN
o c
o
Z A 11384 hrs
§ 2 "“"‘%«M I Replace immediately. |
£ o o \-—.D_‘___\-‘
[n}
8 0 :TﬁDFI & ﬁlﬁcﬁ'ﬂ IJ'PEDEDE 2'# o 2.’- o T —

0 000 10000 15000 20000
Working Age = 11653 [hr]
7=0002742*Fe +5.3955e-005* CorrSed

Takein Figure 13 The Decision Graph

The decision ‘Replace immediately’ was suggested by the model for the first time at the
inspection point at working age = 11384 hrs, 286 hours (about two weeks) prior to failure
(reported at 11660 hrs). The following inspection at working age = 11653 hours, 7 hours
prior to failure, aso suggests the replacement of the wheel motor. The first warning may
have been sufficient, given sample turnaround time of 48 hours, to prevent the
consequences of failure. Even prior to 11384 hours it can be seen from the decision graph
that the results of the measurements indicate that a replacement recommendation was
imminent. Note that the zero points on the graph indicate default measurement values of
zero (imputed by the software) immediately following oil changes.
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The economic benefit associated with basing the maintenance policy on the Decision
Policy Graph (Figure 10) is identified through this type of investigation. This analysis
indicates a potential saving of between 20%-30% compared to the current practice.

CONCLUSION

The case study first demonstrates the value of using the technique of PHM to assist
maintenance professionals to interpret condition data by identifying the key risk factors
and their relative influence on the health of equipment in general, and wheel motors in
particular. Economic considerations were then blended with the PHM risk model to
identify the optimal decision chart. The study then indicates that the implementation of a
condition-based maintenance strategy based on the decision chart would result in a cost
reduction of 20%-30%.
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