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Abstract: 
 
The paper discusses work completed at Cardinal River Coals in Canada to improve the 
existing oil analysis condition-monitoring program being undertaken for wheel motors. 
 
Oil analysis results from a fleet of 55 haul truck wheel motors were analyzed along with 
their respective failures and repairs over a nine-year period. Detailed data cleaning 
procedures were applied to prepare data for modeling. In addition, definitions of failure 
and suspension were clarified depending on equipment condition at replacement. Using 
the proportional-hazards model (PHM) approach, the key condition variables relating to 
failures were found from among the 19 elements monitored, plus sediment and viscosity. 
Those key variables were then incorporated into a decision model that provided an 
unambiguous and optimal recommendation on whether to continue operating a wheel 
motor or to remove it for overhaul on the basis of data obtained from an oil sample. 
 
Wheel motor failure implied extensive planetary gear or sun gear damage necessitating 
the replacement of one or more major internal components in a general overhaul. The 
decision model, when triggered by incoming data, provided both a recommendation 
based on an optimal decision policy as well as an estimate of the unit's remaining useful 
life (RUL). By optimizing the times of repair as a function both of age and condition data 
a 20-30% potential savings in overhaul costs over existing practice was identified.  
 
Keywords : Wheel motors, Condition monitoring, Oil analysis, Proportional-hazards 
modeling, Optimizing condition-based maintenance decisions, EXAKT software 
 
Practical Implications: Current practice for monitoring the health of items is through 
examining trends in readings obtained from various forms of condition monitoring. 
Interpretation of these readings is undertaken by an inspector reviewing current and past 
readings, or through using commercially available trending software. Such an approach 
does not guarantee that the full information-value contained in the readings is captured. 
The paper uses a statistical procedure called proportional-hazards modeling to identify 
the key measurements that should be used to assess the true state of health of the 
equipment.  Economic decision rules are then established. The procedure is described 
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through a case study that reports on the optimization of condition-based maintenance 
decisions for haul truck wheel motors that are monitored through oil analysis. 
Application of the procedure demonstrated a 20-30% potential savings in overhaul costs 
compared to current practice.  
 
This paper underlines the importance of data cleaning and applying a consistent 
definition of failure based on both the observed equipment condition at repair time and 
the inability of the equipment to perform its functions. (for additional discussion see 
Campbell and Jardine 2001). 
 
 
INTRODUCTION 
 
Cardinal River Coals Ltd. is a 50/50 joint venture between Luscar Ltd. and Consol of 
Canada, Inc.  The mine is located approximately 50 km south of Hinton, Alberta on the 
eastern slopes of the Rocky Mountains. The coal produced from the mine is low sulphur, 
high quality coking coal used for steel making.  Cardinal River Coals Ltd. opened in 
1970 as a multiple open pit mine using the truck and shovel mining method.  Current 
annual production at the mine calls for the removal of 21 million cubic metres of rock 
and 2.8 million tonnes of coal.  The mine has won multiple awards for the land 
reclamation and creating wildlife habitat. 
 
There are 26 haul trucks at the mine site, each having two wheel motors. With 3 spare 
wheel motors the fleet numbers 55.The existing policy, based on experience, is to rebuild 
the units after about 20,000 hours of operation. Oil analysis is carried out monthly 
whereby the amount of sediment (weight of filter patch filtrate) and parts per million 
(ppm) of five out of the nineteen elements are noted: iron, silicon, chrome, nickel, and 
titanium. The decision to remove the unit for rebuild is based on manual perusal of the 
values of these elements in combination with the unit's age. 
 
Wheel motor failures relating to the electrical drive elements and breaking system were 
not included in this study since their condition is not reflected by oil analysis data. Seal 
replacements were carried out frequently as a result of high contamination and coincided 
with oil changeouts. The oil changeout event (OC) is considered as a “minor” repair. The 
analysis shows that a high amount of sediment persisting inspite of these corrective 
measures, is associated with a high risk of failure.  
 
Statistical analysis of the CRC wheel-motor data showed a high correlation between iron 
and silicon. That fact would support the view that there are a high number of failures 
which are contaminant induced. Hence one may conclude that there is an event or set of 
conditions that initiate a process of deterioration in the wheel motor. It is assumed that by 
overhauling the unit before the damage becomes more extensive one would benefit from 
savings through failure avoidance.  
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DATA AVAILABILITY 
 
Within the mine’s computer maintenance management system (CMMS) there were 
histories of wheel motor lifetimes, including details of remova ls due to failure or 
preventive maintenance as a result of interpretation of the signals obtained from oil 
analysis. Costs associated with the failure and preventive removals were also available. 
Additionally, there was a database containing a vast history of condition monitoring test 
results – some 50,000 records. 
 
It may seem that it would be an easy matter to peruse and study these two data sources 
and learn which patterns of data have been associated with past failure, thus identifying 
the data combinations that might be employed as condition indicators of future failures. 
Unfortunately identification of the key condition indicators from amongst all the data 
collected is seldom obvious to the analyst. The complexity, volume, and time lags within 
the data render them elusive if not impossible to discern without the proper tools. 
 
In this paper we show a tool that uses a statistical modeling technique known as 
proportional-hazards modeling to bridge these two invaluable data sources. It is the 
central function in a program called EXAKT developed precisely for this purpose by the 
condition based maintenance (CBM) laboratory at the University of Toronto (see Jardine 
et al, 1997). 
 
 
MODEL BUILDING 
 
The Proportional-hazards Model  
 
A valuable statistical procedure to estimate the risk of equipment failing when it is 
subject to condition monitoring is the proportional hazards model (PHM)(Cox, 1972). 
The form of the PHM is: 
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where h(t) is the (instantaneous) conditional probability of  failure at time t, also known as the hazard 

function, given the values of )(),...,(),( 21 tZtZtZ m . Each Zi (t) in equation (1) represents a 
monitored condition data item at the time of inspection, t, such as the parts per million of 
iron or the vibration amplitude at the second harmonic of shaft rotation. These condition 
data are called covariates. 
 
The γ’s are the covariate parameters indicating the degree of influence each covariate has 
on the hazard function. The model consists of two parts, the first part is a baseline hazard 
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and the second part, )(...)()( 2211 tZtZtZ mme γγγ +++ , takes into account the key variables and their 
associated weights. 
 
Data Cleaning Related to Wheel Motor Event Records  
 
The first step in every proportional hazard model (PHM) building exercise is a thorough 
examination of the data. The data-cleaning phase of PHM is considered the most 
important one of the entire modeling process. If we are to accomplish our objective of 
accurate and automated CBM data interpretation, the data upon which we intend to build 
the model must be as free of error as is possible. Much of this paper, therefore, focuses on 
the data investigative or cleansing phase of model building. 
 
Fortunately software provides us with ample tools with which to “cleanse” the data. In 
Figure 1 we show a feature of the EXAKT software (2) that discovers many logical data 
inconsistencies emanating from the CMMS, thereby helping the analyst to make the 
corrections that will improve the ultimate model’s precision.  
 

 
Take in Figure 1 Data Checking Tool 

 
Data required for PHM analysis consists of "histories". Each valid history for a wheel 
motor must have a Beginning event (B), an Ending event (EF for failure, or ES for 
suspension (such as a preventive removal)) and Inspection events. A discussion of how 
suspensions and failures were determined is given later in this paper. A history could also 
have events that are known to affect covariates, such as oil change (OC) events. 
 
The output of the data - checking tool (illustrated on Figure 1) points out probable errors 
based on a systematic evaluation of working ages and corresponding calendar dates as 
reported in the CMMS. Thus it is seen that the software deduces, from the dates and 
working ages, the sets of data that comprise individual histories. For each history that it 
finds without an ending, it asks whether the ending event should be designated as a 
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suspension (ES), a temporary suspension (TS, which is denoted by *ES in the software) 
or a failure (EF). (Note: Temporary suspension means the age of the operating item at the 
time of the data analysis. In the future, TS will convert to an ES or EF event.) 
 
The software also points out anomalies that may indicate data problems such as two 
inspections on the same day, or working ages and calendar dates which are out of 
synchronization relative to the previous and next records. All of these errors would have 
compromised the model’s accuracy. 
 
Most of these types of errors can easily be corrected by inserting the missing Beginning 
and Ending events for each history. 
 
Data Cleaning Related to Wheel Motor Condition Monitoring Records  
 
Examination of the records obtained at oil analysis can be examined graphically in many 
ways using various combinations of covariates, dates, ranges, and scales. For example, 
while exploring the covariates, statistically unusual values of silicon forming a horizontal 
line at exactly 900 parts per million (PPM) were noted (Figure 2). 
 

 
Take in Figure 2 Graphical Analysis of Inspection Records  

 
Investigating with the commercial laboratory it was found that for a period of time the 
photo-multiplier tube on the spectrometer was saturating at exactly 900 PPM. In other 
words all values of silicon above 900 were truncated to 900 PPM. A similar situation 
occurred for iron above 2500 PPM. If not detected, this could play havoc with the 
building of the PHM. 
 
Knowing the errors in the laboratory test data it was possible to compensate for them in 
the database used to build the model. For example, to correct the truncated values of ‘Si’ 
they were replaced with 1.2 x Fe. The factor of 1.2 was determined from the initial slope 
of the cross graph (a correlation graph) of Fe-Si and values obtained after the saturation 
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defect was corrected.  The truncated Fe values were not corrected since there were too 
few of them to influence the model. 
 
The correction applied to the Si values is illustrated in Figure 3.  
 

 
Take in Figure 3 Corrected Silicon 

 
Cross graphs of pairs of covariates are invaluable in finding correlations that are of great 
help in developing and evaluating the eventual model. 
 
Figure 4 shows the correlation between iron (Fe) and nickel (Ni). Correlations between 
other covariates were also tested. For example, Fe vs Ti, Fe vs Si and Ni vs Ti graphs all 
exhibited similar correlation.  
 
Determining correlation between covariates is useful both to provide insight into the data, 
and in understanding the models generated by the software. For example, if ‘Fe’ and “Ni” 
are highly correlated the modeling process would indicate that there is no point in 
including nickel in the model since it has been determined to provide no additional 
information regarding the probability of failure. Thus, if the software concludes that 
nickel is “insignificant”, then by inspecting the correlation graphs one could therefore 
understand the reasonableness of such an indication. These correlations are the result of 
wear of a metallic alloy component present in the unit. 
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Take in Figure 4 Correlating Iron and Nickel 

 
 
Data Cleaning Related to Wheel Motor Oil Changes 
 
When building the PHM it is necessary that when the inspection records are analyzed that 
account is taken of any minor maintenance work that is done, such as changing the oil in 
the wheel motor. For example, Figure 5 illustrates that the actual transition path of oil 
measurements was from A to B to C to D.  If we did not account for the oil change, then 
the modeling process would assume that the transition was A to B to D. This would be 
misleading and would tend to overestimate the risk of failure. 
 

 
Take in Figure 5 Oil Changes 

 
In the EXAKT data preparation phase, the model is told what covariate values should be 
associated with those minor corrective events, such as an oil change (OC). 
 
Figure 6 shows ‘missing’ or ‘irregular’ oil changes and obvious gaps. Oil ages of 7000-
8000 hours are indicated which is quite unlikely with the use of mineral oils in this 
application. The site changed to synthetics about two years earlier to eliminate the need 
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for regular oil changes. However most histories, containing missing oil changes, occurred 
prior to1997. It was thought that this information needed to be recovered from the 
commercial laboratory’s files. Unfortunately these files, too, were incomplete and 
inconsistent with the dates and working ages in the work order database. 
 

 
Take in Figure 6 Missing Oil Change Events  

 
Happily, it was determined that these 'missing' oil changes did not significantly affect the 
model since they were relatively few in number with respect to all of the known oil 
changes. That is, there were a sufficient number of known oil changes in the database for 
the model to account for their effect on the measured data. 
 

 
Building the Proportional Hazards Model (PHM) 
 
After all the obvious data errors were eliminated or corrected, the proportional hazard 
model was generated. As illustrated in equation 1, the hazard function is the risk of 
failure of an unfailed unit at a given point in time. It is a function of both working age  
and the “significant” condition data. By following the iterative procedure in the EXAKT 
software, which is based on Cox (1972), the insignificant covariates are removed to 
arrive at some potential models. Those models are then tested to see how well they 
represent the actual data. One of the methods used by the software is known as residual 
graphical analysis. 
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Take in Figure 7 Residual Graph  

 
Each point on the residual graph of Figure 7 represents a history, namely the time from 
wheel motor installation to its removal. The sample used to build the model consists of 
many histories. The graph shows an unusual point that is well above the 95% upper limit. 
This leads one to investigate the underlying data corresponding to this residual. It was 
discovered that some ‘unusual’ data were included in that history which appear to violate 
the model we are attempting to build. 
 
The unusual residual value was identified as corresponding to one history from wheel-
motor 5509R, with beginning event at 48900 hrs and EF (ending with failure) event at 
72005 hrs.  
 
The ‘offending’ data is shown on Figure 8 
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Take in Figure 8 Investigating the strangeness  

 
The Fe values in the left-circled region of Figure 8 have an inexplicable pattern. Fe jumps 
to high values, but truncated at 2500 PPM due to instrument saturation, and remains in 
the same range for a few more inspections. Then, the readings fall back to low values. No 
events were recorded to explain these sudden jumps.  
 
Having no event data to support such high values of Fe and Si, the model was 
regenerated and the fit tested again after removing that history from the working data set.  
Statistical and graphical goodness-of- fit testing procedures are applied by the software as 
part of the modeling procedure. The model’s fit to the data improved immediately. The 
model building algorithms no longer had to accommodate obviously contradictory and 
misleading information. 
 
The forgoing describes data problems which were encountered and which were relatively 
easy to correct using the statistical and graphical tools available in the software’s 
functionality. 
 
However a different (and more fundamental) problem occurred regarding the definition 
of wheel motor failure. These units seldom failed “functionally”. Being monitored 
monthly, there were few “in-service” failures requiring that a haul truck be removed 
immediately from operation. Nevertheless the model required an objective determination 



 

 11 

that a unit had failed.  To provide the event data to the model, it was necessary to go 
through the past work order records to find the failures and the preventive removals. 
Initially, the tradesman remarks were used for this purpose, such as "High iron in oil 
sample and high hours, removed and replaced wheel motor." This event was then 
classified as a “failure”. However, on reviewing the re-builder's report attached to each 
invoice it became clear that some events initially classified as a failure should be treated 
as a suspension. For example: If the gears had been replaced because they failed an 
ultrasonic test or they were obviously in a failed state then that would be classed as a 
failure. But if they were replaced simply because it was expedient to do so, or if the unit 
was only generally rebuilt with no real internal damage, then that was considered a 
suspension.  
 
With the definition of suspension and of failure thus clarified, a proportional-hazards 
model was found which was shown to be a “good fit”. 
. 
  
The model containing the covariates iron and sediments was found to be good, both by 
graphical residual analysis and by the Kolmogorov-Smirnov statistical test applied 
automatically by the software. The results of the analysis are displayed in Figure 9. 
Covariate significance is tested by the Wald statistic, the square of the standardized 
estimate of the parameter which follows a chi square distribution with 1 degree of 
freedom. (Note: A few missing sediment values had been replaced by the values from 
previous inspections prior to the analysis, hence the reason for using the notation CorrSed 
in Fig. 9). The PHM is thus:  
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Take in Figure 9 The Proportional Hazards Model 
 
 
Obtaining the Decision Model 
 
After determining the PHM we are ready to establish the optimal decision model (see 
Jardine et al 1997) that incorporates economic considerations along with the risk estimate 
obtained from the PHM.  The decision policy was calculated with a cost ratio of 3:1 
($20K for preventive replacement cost, $60K for failure replacement cost, based on the 
invoices of past repairs by outside contractors). See Figure 10. The cost ratio will vary 
amongst applications. It could include the costs associated with operational consequences 
depending on current production and coal market conditions. The model includes the 
effects of regular maintenance intervals (oil changes) at 500 hrs that occurred regularly 
during most of the histories prior to the changeover to synthetic oil. 
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Take in Figure 10 Decision Model Graph 

 
 
A model calculated without including the oil change intervals would tend to 
underestimate predicted failure times (Note: When data was used for estimation, 
covariate values were set to zero on oil change, as defined in the CovariatesOnEvent 
table. The PHM parameters and transition probabilities are then estimated from this 
adjusted data. So, in the subsequent calculation of averages and costs, we have to take 
into account that covariates will regularly have their values reduced.  If not, covariates 
will reach high values in the calculation process faster than in real data, and thus produce 
a higher estimated risk of failure than is really the case). 
 
At present the model does not attempt to optimize inspection frequency (a future research 
feature), leaving the decision up to the user. It is to be noted that no operational savings 
were accounted for. This was due to the present unfavorable coal market conditions 
causing the mine to operate below its capacity. It is expected that as market conditions 
improve higher cost ratios would be used. Current strip ratios (total material removed 
versus sellable material) would also affect the savings associated with increased 
availability and reliability of the units. Figure 11 demonstrates the sensitivity of the 
overall savings to changes or inaccuracies in the cost ratio. 
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Take in Figure 11 Sensitivity Testing 

 
In real situations, the actual ratio of failure and preventive replacement costs may not be 
well known. Furthermore the dynamics of industry are such that costs can change with 
changing technology, production, and market conditions. Therefore one would like to 
know, to what degree the true total cost per unit time and the optimal policy would 
change with changes in cost ratio. The software enables sensitivity analysis to be 
undertaken and generates a graph and corresponding tabular data, see Figure 11. 
 
The curves on the graph are interpreted as follows. Solid Line: If the actual cost ratio 
(CR) differs today from that specified when the model was built, that means that the 
current policy (as dictated by the Optimal Replacement Graph of Figure 10) may no 
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longer be optimal. The line indicates the increase in percentages that will be incurred 
above the optimal cost/unit time for the actual cost ratio by adhering to the current policy. 
For example, if the actual cost ratio is 5 and we are using a model which is based on 
CR=3, then the increase in the cost incurred by following that (wrong) policy is around 
6% (5.98). In other words the solid line represents the sensitivity of costs to changes in 
CR. Dashed Line: Again, assume the actual cost ratio has strayed from what was used 
when the model was built. If the model is rebuilt using the new ratio the dashed line tells 
how much the new optimal cost would differ from that of the original model. (Note that 
the sensitivity graphs assume that only Cf (failure replacement cost) changes and Cr 
(preventive replacement cost) remains unchanged.) In other words the dashed line 
represents the sensitivity of the optimal policy to changes in CR. The graph indicates that 
moderate overestimation of the cost ratio does not significantly affect the average long 
run cost but provides a more conservative policy from the point of view of risk of failure.  
 

 
Take in Figure 12 Potential Savings 

 
The cost analysis summary shown on Figure12 indicates a saving of 25%, when CR=3, 
over the “replace only on failure” (ROOF) policy, whose costs approximate those of the 
site’s past policy.  
 
Decision model results are also calculated for cost ratios of 5 and 6. As the cost ratio 
increases we can observe an increase in both the optimal policy cost as well as an 
increase in savings. The optimal decision models in these cases indicate more frequent 
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preventive replacements (from 74% to 91%) will result from applying the optimal 
decision policy in order to avoid costly failures. (Note: There is a slight discrepancy 
between the expected time between replacements for the ROOF policy, when CR=3 and 
CR=5 and 6. This is due to the numerical calculation procedure.) 
 
 
APPLICATION OF DECISION MODEL 
 
Once the decision model was built (see Figure 10), data was examined from previous 
histories to see what the decision model would have recommended for situations in which 
the wheel motor failed. One illustration of such a history is shown in Figure 13. This 
graph provides a recommended decision based on inspection data (covariates and 
working age). 

 
 

 
Take in Figure 13 The Decision Graph 

 
The decision ‘Replace immediately’ was suggested by the model for the first time at the 
inspection point at working age = 11384 hrs, 286 hours (about two weeks) prior to failure 
(reported at 11660 hrs). The following inspection at working age = 11653 hours, 7 hours 
prior to failure, also suggests the replacement of the wheel motor. The first warning may 
have been sufficient, given sample turnaround time of 48 hours, to prevent the 
consequences of failure. Even prior to 11384 hours it can be seen from the decision graph 
that the results of the measurements indicate that a replacement recommendation was 
imminent. Note that the zero points on the graph indicate default measurement values of 
zero (imputed by the software) immediately following oil changes. 
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The economic benefit associated with basing the maintenance policy on the Decision 
Policy Graph (Figure 10) is identified through this type of investigation. This analysis 
indicates a potential saving of between 20%-30% compared to the current practice. 
 
 
CONCLUSION 
 
The case study first demonstrates the value of using the technique of PHM to assist 
maintenance professionals to interpret condition data by identifying the key risk factors 
and their relative influence on the health of equipment in general, and wheel motors in 
particular. Economic considerations were then blended with the PHM risk model to 
identify the optimal decision chart. The study then indicates that the implementation of a 
condition-based maintenance strategy based on the decision chart would result in a cost 
reduction of 20%-30%.  
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