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ABSTRACT

The focus of the paper is the optimization of condition-based maintenance decisions
within the contexts of physical asset management. In particular, the analysis of a
preventive replacement policy of the control-limit type for a deteriorating system subject
to inspections at discrete points of time is presented. Cox’s PHM with a Weibull baseline
hazard function and time dependent stochastic covariates is used to describe the failure
rate of the system. The methods of estimating model parameters and the calculation
of the optimal policy are given. The structure of the decision-making software EXAKT
is presented. Experience with collecting, preprocessing and using real oil and vibration
data is reported.

Keywords: condition-based maintenance, proportional-hazards model, Markov pro-
cess, cost minimization, decision software

RESUME

Dans ce rapport il s’agit de Poptimisation du processus décisionnel par rapport a
un programme de l'entretien par surveillance de la condition des machines. Plus
spécifiquement on décrit I’analyse d’une politique de maintenance préventive appliqué
4 un systéme qui se détériore mais qui est sujet aux inspections aux moments précis.
Le modéle par Cox qui si traite aux risques proportionnelles (PHM) comprennant une
ligne de base Wiebull ainsi que des co-variants stochastiques est employé dans le bit
de décrire le taux de défaults du systéme. Des méthodes pour effectuer 1’estimation
des parametres du modele ainsi que le calcul de la politque optimale sont présentés.
L’architecture du logiciel décisionnel, EXAKT, est décrit. On inclut, également, dans ce
rapport, de ’experience sur le collecte, le traitement, et 1'usage des données provenant
d'un programme d’analyse d’huile et de la vibration.

Mots clés: programme de 1’entretien par surveillance de la condition des machines,
modelisation des risques proportionnelles (PHM), processus Marcov, minimisation des
cotits, logiciel décisionnel.

1. INTRODUCTION

The optimization of decisions in the field of physical asset management (PAM) is an
area of increasing interest to management since many PAM decisions are integral to
the optimization of supply chain management (SCM) decisions. For example in open-
pit mining PAM decisions may consume up to 50% of the annual operating budget.
PAM expenditures are also significant in capital intensive industries such as utilities,
petrochemical and steel-making. Many PAM decisions are derived through drawing on
the methodology of reliability centered maintenance (RCM) with a frequent outcome
being the use of condition-based maintenance (CBM). Examples of CBM are the use of
information obtained from oil analysis (the spectrometric analysis of metal particles in
oil samples regularly taken from an engine’s or transmission’s lubricating oil), vibration
analysis (the spectral analysis of a vibration signal taken at certain positions on rotat-
ing machinery), fuel consumption, environmental conditions, etc. In current practice,
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methods for making CBM decisions are based mainly on an engineer’s experience and
on warning levels for appropriate variables, e.g. for parts per million (ppm) of iron in
oil samples. More advanced methods that utilize the condition information for decision
making are presented in this paper.

The classical age replacement strategy recommends replacing an item either at failure
or when it reaches a certain age, calculated to minimize the expected cost per unit time.
The advantage of CBM approach is that it takes into account both the age of the item
and its history until the moment of decision making. The condition information can
be considered as a vector of covariates, each representing a certain measurement. A
convenient method to utilize the covariate vector is to include it in the hazard rate
function, using a Proportional-hazards model (PHM), as was proposed by Cox in 1973
(Cox and QOakes (1984)). The PHM and its variants have become one of the most
widely used tools in the statistical analysis of the lifetime data in biomedical sciences
and reliability. In this paper, a parametric PHM with baseline Weibull hazard function
and time dependent stochastic covariates is considered. To calculate the average time to
failure, or the average cost associated with a certain replacement policy, it is necessary
to introduce a probabilistic model for the covariate process {Z(t)}. The state space
of {Z(t)} consists of vectors with coordinates representing specific covariate states.
The joint probability distribution model of time to failure 7' and the process {Z(¢)} is
introduced in Section 2. It is assumed that (N(t), Z(t)), where N(t) = I(T > t), is
a nonhomogeneous Markov process with a finite state space. The maximum likelihood
method is used to estimate the parameters of the PHM and the transition probabilities
of the Markov process. Additional details are given in Appendices 1 and 2. Then
the estimated statistical model is applied to calculate the decision policy. An obvious
extension of the classical age replacement policy is the policy to replace an item either
at failure, or when covariates reach some predefined “alarm” states. The level of the
“alarm” state may depend on the current age of the item. Combining this method with
a cost structure that includes the preventive and failure replacement costs, an optimal
policy can be calculated to minimize the expected cost per unit time. If the hazard
function is increasing (as it is commonly assumed in research papers) then the optimal
policy is very simple, i.e. of the control-limit type (Aven and Bergman (1986), Makis and
Jardine (1991)). But in practice, a hazard function that includes covariates as in PHM
is often “non-monotonic”, at least due to sampling variations, or regular maintenance
practices such as oil changes that can affect covariate values. Since the control-limit
is applied to the hazard function, this simple policy can be still useful to prevent high
risk, even if the hazard function is not strictly increasing. This general case is discussed
in Section 3. Relaxation of the “monotonicity” assumption significantly increases the
complexity of the calculation. Calculation of the cost function is considered in detail in
Appendix 4.

The CBM consortium research group was established in 1995 at the Department of
Mechanical and Industrial Engineering, University of Toronto. The goal of the project
was to develop software that can assist engineers to optimize decisions in CBM envi-
ronment. The current development of the software is briefly presented in Section 4.
Some experience with collecting, preprocessing and using real oil and vibration data
for estimation and modeling is given in Section 5. Proposed research extensions are
discussed in Section 6.

2. STATISTICAL MODEL

We consider a replacement model in which an item is replaced with another one “as good
as new”, either at failure, or at planned replacement. It assumes that item histories
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are independent and identically distributed random processes. A history includes the
information on the item’s observed lifetime, censoring information and information on
the diagnostic (concomitant) variables collected during the observed lifetime. Let 7" be
the time to failure of the item, and Z(t) = (Zi(t), Z2(t), ..., Zm(t))’ an m-dimensional
covariate process, observed at regular inspections of the item. It is assumed that Z(t)
is a right continuous process, with left-hand limits. In practice the coordinates of
Z(t) can represent both the external variables (environmental conditions), and internal
(diagnostic) variables. The external covariates can affect the time to failure, and the
internal variables (such as level of a wear out metal in engine oil) can reflect the current
state of the item. We will not consider any formal definition of “external” and “internal”
covariates. For an extensive, but rather informal discussion on covariate “types”, see
Kalbfleisch and Prentice (1980, Ch. 5). We will assume that each covariate is a discrete
numerical variable with finite number of values. These values can represent states,
such as new, normal, warning, dangerous, using figures 0, 1, 2, 3 or midpoints of class
intervals for physical measurements, such as for vibration level or ppm (parts per million)
of iron in an engine’s oil. So, the state space of the process Z(t) is also finite. To
introduce a joint distribution of 7' and Z(t), we will define a right-continuous process
N(t) = I(T > t) (I(o) being the indicator function) and assume that (N(t), Z(t)) is a
nonhomogeneous Markov process in a sense that

P(T > t,Z(t) = JlT > s, Z(S) - i: Z(sk—l) = ik~17- g Z(SO) = Z-0)
=P(T >t,Z(t) =jIT > 5, Z(s) = 1) = Pi;(s,) (1)
for any 0 < 89 < 8 < ... < 8k_1. < 8 <t and states ig; %1,...,%p—1, %,7- A necessity
for this kind of definition may be in fact that values of Z(t + €) for any € > 0 “. .. may
even not conceptually exist (i.e., covariate processes may be randomly stopped by the
corresponding failure times).” (Self and Prentice (1982)). Thus, this definition includes
both “external” and “internal” covariates. For simplicity we can assume that Z(t) is

available at time points t = kA, A > 0, k£ = 0,1,2,... (inspection points), and that
Z(t) for kA <t < (k+ 1)A can be approximated by Zy = Z(kA). Let

Pij(k) = P(Zx41 = JIT > (k+1)A, 2, =) (2)
be the (conditional) transition probabilities of the process {Zx}. Let also
P(T € (t,t+ dt)|T > t, Z(s),s < t) = h(t, Z(t))dt,
i.e. h(t,Z(t)) is the hazard function of T'. Then we have
P(T > kA + z|T > kA, Z(s), s < kA)

kA+x kA+x
= exp{ - AA h(t,Z(t))dt} = exp{ - AA h(t,Zk)dt}, Q< <A,

and also

pi'j(kA, (k S 1)A) P(T > (k‘ 5 1)A, Lrl— j‘T SN = l)
P(T > (k+ 1)AIT > kA, Z = i)
XP(Ziy1 = JIT > (k +1)A, Zy = i)
(k+1)A
exp { - /’c (t, Z(0))dt iy (k). (3)

A

Il
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If we consider the history (7, Z) = (7, (Z(s);s < T)), then

P(T>t,Z(s)s<t) = P(T>t%0,Z1,%0. .., Zi;kA <t < (k+1)A)
k—1

= P(T>0,2) [ T Przu (0, + 1)A] Py, 205 (kA )
1=0 ] o
= P(T>0,Z)exp] - /0 (s, 2(s))ds} [] Pz @) (4)
=0

It should be noted that S(t;Z) = S(t;Z(s), s < t) = exp{ - fot h(s,Z(s))ds} is
frequently confused with the conditional reliability function R(t;Z) = P(T > t|Z(s),
s < t). If Z is an internal covariate process, R(t; Z) can be meaningless or trivial, taking
values 0 and 1 only. If Z(t) is an external process, and T is a “randomized” stopping time
(Kebir (1991), Pitman and Speed (1973)), then R(t; Z) exists and R(t;Z) = S(t; Z).
Nevertheless, if h(t, Z(t)) pi;(k) and p;(0) = P(T > 0, Zp = 1) do not have common
parameters, then S(t; Z) and its derivative g(t; Z) = h(t, Z(t))S(t; Z) can be used to
construct the likelihood function and estimate the parameters of the hazard function
h(t, Z(t)). In either case, it can be considered as a contribution to the partial likelihood
(Kalbfleisch and Prentice (1980, Ch. 5), Andersen et al (1993, Ch. 2)). Let (T, G,
ZW(s); s < T3), i = 1,2,...,n, be a sample of n independently observed histories,
where C; is the censoring indicator. We assume right-censored data and independent
censoring. Then the likelihood of the sample is

L@« [ w@29T):0) []5(T5,29;6). (5)

@Ci=1 ]

The parameter @ of the hazard function can be estimated by the maximization of L, or
maximization of log-likelihood { = log L. In this paper we consider a parametric PHM
with baseline Weibull hazard function as a model for the hazard function. This model
is also known as a Weibull parametric regression model. Then

Il

wzpny = 2(8) en{ S )
1

= hO(t7ﬁ>n) eXp{’}/Z(t)}a ﬁ 2 07 B> 07 'Y’ = (’71)727-“77171)(6)

Let 0 = tjgp < t;1 < ... < tix, = t; be the actual inspection points for the ¢th history,
and zgi) = Z(i)(tij) be the observed covariate values, j = 0,1,...,k;, 1 = 1,2,...,n.
The inspection times are usually not equally spaced, but it can be ignored if the inter-
vals between successive inspections are not very variable. The factor S(t, 2(9) can be
calculated as follows

S(t,z®) = exp{— : ho(x)exp{'y’z(i)(r)}da:}

0
ki—1

= e {-3 [ erptrsO@)aam?)
§=0 “*4
= exp{ it kiZ_IeXP{’Y'Z;i)} [(ti(ﬂl)/n)ﬁ - (tij/n)ﬁ] }: (7

=0
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using that z((t) = zj(.z) for t;; <t < tj(j41). Some other approximations can also be
used, such as z(9(t) = (zy) + 21(-21)/2 for t;; <t < tyj41). The latter one could be
more suitable for “non-monotonic” covariates. If there is no covariate measurement
z,(c:) — z(i)(ti) at the event time, some extrapolation is necessary. For “monotonic” co-
variates some polynomial trending, such as linear, can be used, but for “non-monotonic”
covariates this can often produce an unrealistic result (very high, or very low value).
In general, a simple method to use the previous measurement 2(*(t;) = z(i)(ti(ki_l)) —

z,(:)_l can be recommended. In either case
g £\ Bl '
¢ Dy = B(L o
Mt 2Ow) =2 () exely 20}, (®)

and then the total log-likelihood is

U=UB,m,y) ocrin(B/m) + (B—1) 3 JIn(ti/m) + 3 /29 (k)

ti
- [ ety O/, ©)

where r is the number of failures. A maximization technique can be used to estimate
the parameters 3, 7, v, e.g. BFGS Quasi-Newton method (Press at al (1992)).

The method of maximum likelihood can be also used to estimate the transition
probabilities of the Markov process model. If the inspection instants are (at least
roughly) equally spaced, then the estimator for the transition probability in (2) is

s g Mgl g
pz](k)— m.—(k), k—-1,2,..., (10)
where n;e(k) = -, nij(k), and n;;(k) is the number of one-step transitions i — j at
the time kA in the sample (Basawa and Rao (1980)). In practice, a large sample size
(many inspections) would be necessary to obtain good estimates of p;;(k) for each k.
It is more convenient to make a partition of the time range into L intervals, 0 = [y <
[ <...<ly = oo, and assume that the process is homogeneous within each of these
intervals, i.e. pij(k) = pij(lr—1), lr-1 <k <l,, r=1,2,...,L, and then to estimate
pi;(l—1) by AL
i _ Nygllr—1
pij(lr—1) = T (11)

where ftii(le—1) = Y,  mglk) and Relle1) =) fill—1).

I Sk<l 7
With variable, but still not long intervals between successive inspections, it is more
convenient to estimate first the transition rates and then calculate the transition prob-
abilities. Consider for now the process {Z(t)} without approximation {Zx}. Assume
that Z(t) has constant conditional transition intensities within given partition of time,
U =8y < & <. 8g =00 1 il puiths) = Bt = il >3 Z(s) = i), then
pij(s + ds|s) = &;; + )\E;-)ds, 51 < 5 <t < 5141, where §;; is Kronecker § symbol, and
T /\1(-;-) = 0. Then the transition rates )\E? can be estimated using occurrence/exposure
J

rates
()

NG By e e !
= & 173 A= 3, (12)
i j#i
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where ng) is the number of all transitions ¢ — j occurred over the interval [s;, s;41) in

the sample, and AEI) is the total length of time that the state ¢ is occupied over the
interval [s;,s;+1) in the sample. Note that this method can be applied in practice if
inspections are frequent enough to cover almost all transitions in the observed period,
as it would be if the transitions occur just before the inspection instants. For the
proof, see Appendix 1. Note, however this is not an estimation for an ordinary Markov
process, as given in Basawa and Rao (1980, Ch. 8), because here we deal with the
transition probabilities conditioned on 7". For an alternative nonparametric approach
to the estimation of the transition probabilities using the theory of counting processes,
see Keiding and Andersen (1989), or Andersen et al (1993). If the covariate process
{Z(t)} is an external Markov process, then the transition probability matrix can be
calculated by

O (A )i
PW(z) = exp(APz) = Z %, 0<z<sip1—s, (13)
=0 ?

where P)(z) = (pg-)(s+:c|s)), 81 <8< 8+ <84,and AD = (/\g.)). In general, (13)

can be used as an approximation to P()(z) for small z, in practice not greater than the
average interval between successive inspections. For further details, see Appendix 2.

3. OPTIMAL REPLACEMENT POLICY

The model for CBM described in Section 2 assumes inspections of an item at fixed
intervals of time, and a decision policy as a rule for replacement or leaving the item in
operation until the next decision opportunity. The rule depends on the age of the item
and the inspection results. The item is always replaced at failure. An optimal rule is
selected to minimize the average replacement costs per unit time due to preventive and
failure replacements over a long time horizon. Let C;, = C be the preventive replacement
cost, and Cy = C + K be the failure replacement cost, per one replacement. These
costs are assumed fixed and equal for all replacements. Assume also that the preventive
replacement can be planned at any moment. Let d > 0 be a “control-limit” value, and
Ty = Ty(Z(s); s > 0) a stopping rule of the form

Ty = inf{t > 0: Kh(t, Z(t)) > d}, (14)

i.e. if T; < T, perform the preventive replacement at Ty, and if 7; > 7', perform the
failure replacement at T'. Let also

Q(d) = P(Tq 2 T), W(d) = E(min{Ty, T}). (15)
The expected cost per unit time is then

C1-Q@)+(C+K)QM) C+KQWd)
W(d) W(d)

®(d) = (16)

The optimal control-limit replacement rule 7* = Ty- is defined by d* for which ®(d*) =
Tig@(d). If the hazard function h(t, Z(t)) is non-decreasing with time, the rule 7™ is
>

proved to be optimal in general, i.e. it is the best possible replacement policy (Aven and
Bergman (1986), Makis and Jardine (1991)). Also, ®(d*) = d* and the optimal level d*
can be found using the fixed-point iteration procedure d, = ®(d,—1),n =1,2,...,do >
0 arbitrary. A good choice is dg = ®(o0) = (C + K)/E(T), to start with the policy to
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replace only at failure. The iteration procedure usually requires only a few steps, but
the calculation of the function ®(d) is complicated and can take a relatively long time
if the number of states for the process {Z(t)} is large. This can be the case even with
few covariates. We will consider this calculation later.

The assumption about increasing hazard is theoretically very appealing, but rarely
met in practice. In our statistical model covariates are considered as random, and their
stochastic behavior is directed by the transition probabilities (2). In practice, some
regular maintenance procedure (not considered as a major overhaul), such as oil change,
or regular replacement of some minor component, can slightly improve the equipment
state and reduce the hazard rate, even if it has an increasing trend. If the covariates can
decrease, at least due to sampling variations, this can also make the hazard function
“non-monotonic”. In that case the optimal control-limit rule 7* is not optimal in
general. But if the hazard rate has an increasing trend, such as in our model (6) for
B > 1, T* can be “near to optimal”. Also, it is hard to find some practical decision
rule that would be optimal in the general case, with non-monotonic hazard function.
We will not assume that hazard function is increasing, but we will again consider the
control-limit rule, with a slight modification, and try to find the optimal level d*. Let
in (6) 8 <1. Then h(0,Z(0)) = oo, and T, = 0 for all d > 0, i.e. the rule would require
immediate replacement at 0. So, the control-limit policy cannot be applied in general
without some restrictions. Assume that h(t,Z(t)) < oo for all ¢ > 0. We will introduce
the minimal preventive replacement time tg > 0 and define the stopping rule

Ttﬂ,d = inf{t > i Kh(t,Z(t)) 2 dh—= max{tR,Td}. (17)

If Kh(t,Z(t)) < d for all t > tg, then T3, 4 = o0. So, T}, a4 > tg, i.e. no preventive
replacement is planned before tg, regardless of the covariate process Z(t). The time
before tg can be considered as a “run-in” period, or a “warranty” period. Let Kr be
the failure replacement cost for a failure in the period [0, tg] (usually C < Kr < C+K).
Let Q¢p(d) = P(Tina 2 T), Wip(d) = E(min{T;,4,T}). Then the expected cost per

unit time is
C+ KQiz(d) — (C+ K — Kr)P(T < tg)
Wi (d) ;

(see Appendix 3). Calculation of the cost function (18) is more complex than for the
“increasing” case, and the optimal level d* cannot be found by just using the itera-
tion procedure, but can be obtained using direct minimization. The cost function can
be calculated at a set of points d;, and then d* can be approximated by df for which
®, . (df) = min; D4, (d;), or using an interpolation. An additional problem is that ®;, (d)
is not in general a continuous function, as it is for the “monotonic” case. For example,
if in the Weibull regression model 3 < 1, then ®;,(d) is a step function. The calcu-
lation for lot of points d; in such cases is sometimes necessary. The calculation of the
function ®;, (d) is considered in detail in Appendix 4. It is shown that the calculation
is convenient for a stopping rule of “multiplicative” form (see Notes in Appendix 4).
Once the optimal threshold level d* is calculated, then the optimal replacement rule
is to replace the item at the first moment ¢ > tg such that h(t, Z(t)) > d* /K, or in the

Weibull regression model case, when (3/n)(t/n)P ! exp(Z'yizi(t)) > d*/K. A more
intuitive form of this decision rule is

T* = min {t >t Z8(t) =Y wZit) > 8 — (8- 1)lnt} (19)

D1p(d) = (18)

8* =1In(n?d* /(BK)). The function g(t) = §* —(8—1) Int can be considered as a “warning
level” function, applied to an “overall” covariate value Z€(t). If 3 > 1, g(t) is a strictly
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decreasing function (see Figure 1.(a)). If 3 =1, g(t) = é* is a constant “warning” level,
as is usually applied in practice (Figure 1.(b)). If # < 1, then g(t) = 6* + (1 — 8) Int
is an increasing function. In that case it is obvious that high values of Z€(t) are more
important sooner than later in the equipment life (Figure 1. (c)). An interesting feature
of the “warning-level” function g(t) is that its shape is not affected by the change of the
replacement costs C'y and Cy, it is just translated up or down, because only the constant
0* is affected by new d*. It appeared that §* is not very sensitive to mild changes in the
cost ratio Cy /Cp, but it is hard to give an accurate estimation. This has an important
application in practice: only rough estimation of the cost ratio is necessary to get the
decision policy close to optimal.

We will also incorporate regular preventive maintenance practice in the model. As-
sume that the regular maintenance affects the covariates at given intervals of time by
forcing covariate values to initial or some predetermined states. Let the time between
successive regular maintenance actions be tpr, tyr < 0o, and ipy is the state “at main-
tenance” (just after the maintenance) to which the covariates will be returned after the
action. The state ip can also depend on the age of the item when action is taken. For
simplicity, let ips be time-independent. Let {Z(t)} be the process {Z(t)} “affected” by
the maintenance. Then Z(t) is a Markov process with Z(ktp) = ipr, with probability
one, and the following transition probabilities between maintenance points:

Pij(s,t) = P(T >i,Z(t) =3j|T > s, 2Z(s) = i)
= Py(s,t), ktm<s<t<(k+1tny,
Piipe (s, (k+ Vtar) = P(T > (k+ Dtm|T > 8,Z(s) = i) = Pia(s, (k + 1)tnr),
P(s,(k+Dtp) = 0, j#ium, kta <5< (k+ 1ta, (20)

for k = 0,1,2,...,, where P;;(s,t) is defined in (1), and Pje(s,t) = }:j Pyi(s,t). Bx-
tension beyond the maintenance points is obvious. In an example with engine oil data,
regular oil samples were taken and analyzed every 200 hours, and oil and filter changes
were performed every 600 hours. Data showed an increasing trend (with variations)
between oil changes, so that the oil change information was important for a proper
analysis and interpretation of measurements. More discussion on related problems is
given in Section 5. If the data incorporates regular maintenance information, this should
be used to properly estimate the transition probabilities of Z(t). Only the transitions
between two successive maintenance points ktpr and (k + 1)tpr, £ = 0,1,2,. .. should
be considered in (10-12) for the estimation of (20). Some enhancements of this “pre-
ventive repair” model are possible, such as the “state at maintenance” i, is random,
depending on the history of the process {Z(¢)} until the repair, but this could make the
model more complicate to estimate. For other possible enhancements of the model, see
Section 6. A critical discussion on the complexity and application of theoretical models
in maintenance practice has been recently given by Scarf (1997).

4. STRUCTURE AND DEVELOPMENT
OF THE SOFTWARE FOR CBM

The CBM Laboratory was established in 1995 at the Department of Mechanical and
Industrial Engineering, University of Toronto, to develop decision-making software for
CBM. The design of the software is based on the replacement policy model introduced
in Sections 2 and 3. After five years of development, the Versions 1.0 and 2.0 of the
software called EXAKT, were released to Consortium members. We will briefly present
the structure of EXAKT and its main options. A more detailed overview of Version 1.0
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Covariate
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warning level g(t), if p>1
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Figure 1: Optimal replacement policy
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is given by Jardine et al (1998). The software is being developed in such a way that the
user can:

1. Create a convenient database by extracting the event and condition (inspection)
information from external databases.

2. Perform data analysis and preprocessing, using graphical and statistical analysis.

3. Estimate parameters of the PHM and Markov process model. The model can be
evaluated using Cox-generalized residuals and a variety of tests (Wald test, Log-
likelihood test, Kolmogorov-Smirnov test, X? test for independence of covariates
and for homogeneity of the Markov process).

4. Compute and save the optimal replacement policy. To cover the situation in which
condition information is not available for decision making, simple Age and Block
replacement policies are also included.

5. Make decisions for current records whenever it is required, using the already saved
decision model. The decision recommendation (replace/don’t replace, and some
other useful information, such as the expected “remaining life”) is stored in the
user’s database for further utilization.

EXAKT also provides procedures for the checking, correction and transformation of
data. A simplified programming language has been developed and included in EXAKT
to help the user analyze the data using graphical methods and a number of statistical
operations. The user can also generate new variables by transforming the original data,
applying mathematical functions such as log or ezp, linear combinations of variables, or
by calculating rates, cumulatives or different kind of trends. Time component can be
also included in these transformations: the user can apply different transformations to
the same variable in different time intervals, e.g. to fit the PHM with time-dependent
coefficients (such as to use piecewise constant functions f3;(t), see Murphy and Sen
(1991), Marzec and Marzec (1997)).

5. EXPERIENCE WITH REAL DATA
5.1 Data Collection
In this section we will briefly present our experience with real data. Numerous short-

comings in data collection practices were experienced while preparing and analyzing
data from collaborating companies, such as:

1. Improperly organized databases.

2. In many cases, only the calendar age is recorded, and not the real usage time
(working age) of the component. If the working age is recorded, there are often
inconsistencies with the calendar age that have to be cleared up.

3. Usually there are no records on maintenance done during a component’s lifetime.

4. If maintenance records are available (often in a form of hand-written workorders,
which is close to being useless), there is no proper repair type classification in
a form of codes. This could be very convenient for possible use of a model for
repairable systems.

5. The cause of replacement or maintenance is usually not recorded, i.e. whether an
action was taken preventively, or because of failure.
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6. Inspection data is sometimes missing because either it was deleted after a cer-
tain period of time, or it was not stored regularly in the database. This problem
becomes now less significant with increasing utilization of more powerful comput-
erized maintenance management systems.

7. Inspections are not done regularly, or they are repeated more often when some
problem is suspected.

An example of these kind of problems encountered with data requirements and their
collection related to the operational decision support system PROMPT can be found in
Dekker and Scarf, (1998, Section 3). Similar problems in applying optimization models
are also discussed by Dekker (1996, Section 5).

5.2 Modeling

Here we will give some tips in the modeling with oil analysis data for mobile equipment,
but they are not uncommon with other types of analyses, such as vibration monitoring.

1. When metal levels are plotted against working age, there is often a “run-in” period
for new equipment (such as an engine) when the metal levels are extraordinarily
high. These values are not very indicative for the equipment health, and can be
replaced by some average values more informative of the metals’ long-run behavior.
An advanced method suggested by Tibshirani (1988), can be used to standardize
these values and extract possible valuable information. The method appeared
successful, but not very simple to implement as a regular procedure.

2. 0Oil analysis data exhibits quite a large amount of variation. As metal particles
indicating wear accumulate in oil, levels of these metals should increase with oil
age. In practice, a decrease in the metal levels can be often seen, especially in
metals that do not show much wear, even with the same oil (for mobile equipment
it is usual to have only one or two readings before the oil is changed). This was
one of the reasons why we had to consider the “non-monotonic” covariates.

3. Tt is recommended by technicians to use rates (metal level < oil age) to indicate
metal wear. An increase in the rate of wear should indicate failure warning.
Unfortunately, miss-specified oil ages - especially when very small - combined
with large variations, have a very detrimental effect on rates since they give rise
to many spuriously high rates. This problem is also mentioned in Jardine et al
(1989). Toms (1998) uses a simple adaptive trend algorithm as an approach to
the solution of this problem.

4. As an alternative, one can also consider cumulative metal levels. The function
of cumulative levels for a metal would be proportional to the total volume of
that metal lost to wear and may therefore be related to the lifetime of the unit,
as considered in a different context by Ansell and Phillips (1989). However, the
cumulative metal level is unlikely to be sensitive to a sudden change in rate.

5. If replacements of components and minor repairs are not recorded, the metal levels
will appear to go up and down for no apparent reason. This may account for cases
we have seen where there are no increasing patterns in the average metal levels over
the long term. This will decrease the significance of related “regression” coefficient
v; in PHM. The problem of minor repairs is also related to the decision on how
to build the model and possible inclusion of the regular maintenance interval, as
discussed in Section 3.
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5.3 Case Study

We will give a brief overview of a case study that refers to a shear-pump bearings in
a food processing plant. Diagnostic data was obtained from vibration measurements
on the bearing, in axial, horizontal and vertical directions. Time domain data is auto-
matically transferred to frequency domain. For each direction seven measurements are
obtained: velocity spectrum in five frequency bands, overall velocity, and overall accel-
eration, which totals in 21 covariates. 25 histories were available, including 13 ended by
failures and 12 ended by preventive suspensions. The average history duration, in this
case also the average replacement time, was 221 days. 165 inspections were performed
during the study period, with the average time between inspections being roughly 35
days. After statistical analysis and PHM estimation procedure, three covariates were
finally included in the model: two velocity bands in the axial direction, and one ve-
locity band in the vertical direction. Time (age of bearing) appeared as 31gn1ﬁcant
the estimate of the shape parameter 3 = 4.992, with the standard error 6(3) = 1.173.
Test model fit was acceptable. These results are consistent with technicians experience,
except they expected one or two more covariates to appear in the model. For each co-
variate in the model, certain covariate states were established using technical standards,
with practical interpretation as: “very smooth”, “smooth”, “rough”, “very rough”, and
the Markov process model was estimated. We will not go into further details of the
estimation procedure.

The optimal control-limit decision policy was calculated for the cost ratio Cp: Cf =
1: 9, as suggested by the company. No regular maintenance interval tps, or minimal pre-
ventive replacement time t g were included. The calculated cost of the optimal policy was
$16.04/day, and of the policy to replace only at failure was $74.79/day. The expected
time between replacements for the optimal policy was 173 days, and for the policy to
replace only at failure was 283.32 days. The former value can be compared with the com-
pany’s actual mean replacement time of 221 days, and the latter with a non-parametric
estimate of the mean time to failure of 297 days (using Kaplan-Meier product-limit esti-
mator for right censored data). The company’s actual cost was $55.02/day (calculated
from the number of failures and suspensions), which is better than to replace only at
failure, but much worse than the optimal policy.

To check whether the calculated optimal policy is reasonable, different methods can
be applied afterwards to the analyzed histories. The method applied here is conser-
vative, and is not straightforward, particularly with a small sample size, and will be
discussed in a future paper. As a result, 7 failures, 17 suspensions and one undecided
case would be obtained, if the optimal policy were followed, instead of the actual 13
failures and 12 suspensions. The “realized” optimal cost would then be $37.37/day
with an average replacement time of 209.71 days. The “realized” optimal cost is larger
than the theoretical optimal cost, but still smaller than the actual cost. We think the
company’s real average cost/day is higher than the calculated $55.02/day, because some
of the histories that were reported as suspended preventively, are actually temporary
suspended (calendar suspensions) and it is still unknown whether they will end with
failure, or suspension. Also, the difference between the theoretical optimal cost, and
the “realized” optimal cost could be explained due to the small sample size, and even
more importantly because of very irregular inspections sometimes used by the company.
These irregular inspections increased the time between replacements, but also increased
the number of failures. It should be noted that the company considers a very high
vibration level also as a failure, and this was included in the analyzed data set. In 5
out of 7 “unpredicted” failures, the vibration level was well above the “warning limit”
function (see (19) and Figure 1 (a)) at the last inspection. Only in two “unpredicted”
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cases was the vibration level at failure below the “warning limit”.

One can question testing the decision model with the same data used for its cal-
culation, but the test is useful at least as a “crude” check. Obviously, with more or
new histories available, there are other possibilities, for example, one group of randomly
selected histories could be used to build the model, and another one to test the model.

6. RESEARCH DIRECTIONS AND ENHANCEMENTS

Possible research extensions of the decision model presented in Sections 2 and 3, are in
the area of repairable systems, and optimization of inspection and maintenance inter-
vals. A combination of repairable systems with multi-component systems and the PHM
is of great importance because of fairly complicated maintenance practices for complex
systems and fast growing interest in CBM. It can include different failure modes, par-
tial repairs or opportunistic maintenance and other preventive maintenance practices.
The current maintenance practice often produces histories with almost no failures. An
attempt to overcome this problem is made by introducing two failure modes, Makis
(1995), one related to catastrophic failures, and the other related to reaching some
“warning” level of a diagnostic variable. Of theoretical and practical interest is also
how to deal with partial or incomplete data, e.g. with histories that can report failures
or suspensions with segments of the inspection records missing. Incomplete data. could
be a regular situation: some variables intentionally are not recorded at every inspection.
This cannot be considered as an ordinary “missing data” problem. The question is not
only how to fit the statistical model, but also how to include this partial information
in the decision making. Inclusion of some more advanced non-constant cost models can
be also considered, particularly if a multi-failure, or multi-component model is more
realistic, but only if an appropriate cost data is possible to collect. As mentioned by
Scarf, regarding extensions of the maintenance models (1997): “Often, sufficient data
are not available to consider complex models; even if data are available, the maintenance
policies implied by complex models [...] may be difficult to implement in practice.”

7. CONCLUDING REMARKS

The growing application of condition monitoring techniques in maintenance decision
making has produced a challenge for researchers to develop appropriate more advanced
decision models. Proportional-hazards modeling of the risk estimation of equipment
failure combined with economic factors is found to be a useful method of utilizing the
condition-monitoring information. Close collaboration with supporting companies has
become a rich source of industry driven research topics, as well as a base for development
and testing of the software for condition-based maintenance.
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APPENDIX 1.
Estimation of the transition probability matrix

Tet Pii(s,t) = P(T > t,Z(t) = g|T > s, Z(s) = i) and P(s,t) = [Pi;(s,t)]. Note that
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P(s,t) is not a stochastic matrix, because ZJ. Psls ) =lPl L s, Zs)i— 1) <1
By (1) P(s,t) = P(s,u)P(u,t), s < u < t, where is assumed that P(s,s) = lim P(s,t) = I.
tls

Let 2 P(s,t)|t=s = a(s) exists. Then ZP(s,t) = P(s,t)a(t). Let A,_,(s) = 2pi;(t|s)]t=s =
SEZ0) = AT > 1. 20 =Ples =00, X = ql = 30 A0 e < 8 € s,
and A®) = (/\“)) Let D(s) = diag[h(s,i)];. It can be shown that a(s) = A®) — D(s), ie.
ii(9) = )\(” —8ijh(s,1), 51 < s < s41. Let ai(s) = —aui(s) = /\fl) + h(s,1), s; < s < si41, and
air(s) = P(T < s+ds|T > s, Z(s) =1i)/ds = h(s,?). Let also p;(0) = P(T > 0, Z(0) = 1).

Let (t,6,2) = (t,6,(2(s), 0 < s < t)) be an observed sample history, where T =t if § = 1
and T > t if § = 0, and the complete observation of the covariate process Z(s) is z(s), for
0<s<t Let 0 =x9 < 21 < T2 < ... < xx <t be the time points at which z(t) changed
the state, and z(z;) =1i;, 7 =0,1,...,k, 2(t) = z(zx) = ix - 2(s) is assumed right continuous,
with left limits. Let us note that with probability one there is no jump of Z(¢) at 7. Then the
likelihood of (t,d, z) has the form proportional to

p,o(O)xH[ [ (-ays ds)awm(zﬁl)] I - ()ds)

J=0 z;<s<z;i zp <s<t
x [0, 7 (t))°
k—1 T 41 k-1 t
= Pis (0) X Hexp{ —/ Qi (s)ds} X Haijij+l(1:j+1) X exp{ —/ i, (s)ds}
j=0 it 3=0 Ty
x [h(t,ix)]’
t
=pe (0) % exp{ —/ az(s)(s)ds} X H()\(l)) i x [h(t, 1k)]
0 S

= pip (0) x exp / [h(s,2(8)) + Az(s)(s) ]ds} X H(,\(” ¥ x [h(t,ix)]®

1,1,

(L e NG e ®, M
= (0 exp{ /0 h(s,z(s))ds} X [t a0 exp{ %:)\1 a; }
< [T,

L5

where ng) is the number of all transitions 7 — j occurred over the interval [s;, si+1) in the

history, and aEl) is the total length of time that state i is occupied over the interval [s;, si+1) in
the history. The total likelihood for a sample of independent histories can be obtained as the
product of the terms of the previous form. If the initial probability p;(0) and the hazard function
h(s,7) do not depend on ’\«(;;)’ then the ML estimates (12) of the form occurrence/exposure

rates can be easily obtained. The method of counting processes can be also used to obtain the
likelihood of the sample (see Andersen et al (1993, I11.1.2)).

APPENDIX 2.
Calculation of the transition probability matrix
The transition probability matrix P(s,t) (see Appendix 1) can be expressed as a product
integral
P(s,;t) = [[U+ AV - D@)dz), si<s<t<siya, 1=12,... (21)
(s,t]
The product integral (21) can be computed as a finite product

H(1+ (A? — D(;))Ax;), Az;=2zip1—%j, S=To<T1,<...<Zn=t, (22)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




46 D. BANJEVIC, A K.S. JARDINE, V. MAKIS AND M. ENNIS

for ¢ = max{Axz;} sufficiently small, at least to provide that diagonal elements of (I +
(A — D(z;))Az;) are nonnegative. For an overview of product integration see Andersen
et al (1993), or Gill and Johansen (1990). An alternative method to the computation of
P(s,t) is the following. Let for a quadratic matrix B = (bij), exp(Bz) = B =
I + Bz + Rp(z), where |Rp(z)| < :::2(||B||2/2)exp{||B||:z}, z > 0, and ||B| is a matrix
norm, e.g. ||B|| = max; Zj |bij|. The matrix I + (A®) — D(z;))Az; can be approximated by
exp(—D(z;)Az;) exp(A®) Az;). Then, using Duhamel’s equation (Andersen et al (1993)),

[1¢ +A® - D(z;)Az)) ~ T exp(~D(2;)A2;) exp(A® Az;)

£ J

E Z H (I + (AY — D(z;))Az;) — exp(~D(z;) Az;) exp(AP Ag;)

< %C(e),

where C(¢) is bounded for € < &9, and &y is selected such that max; ||+ (A® —D(z;))Az;| <

1. If we use an approximation exp(—D(z;)Az;) ~ exp ( - f:?“ D(z)dz) = diag[exp { -
J

! iy h(a:,'i)da:}] , then also
J

zjt1
P(s,t) =~ Hexp ( —/ D(a:)dz) exp(A(l)Al‘J), S Siscit <5,

3 J

as is basically introduced in (3).

APPENDIX 3

Cost function

®;, (d) =expected cost of one replacement cycle/expected time of one replacement cycle =
c(tr,d)/e(tr,d). Then e(tr,d) = E(min{Ti, 4, T}) = Wi, (d) and

e(tr,d) = KrP(T<tr)+(C+K)P(tr<T <Tipa)+CP(Tipa<T)
= KgrP(T <tr)+ (C+ K)[P(T < Tin,a) — P(T <tr)]+ CP(Tina<T)
= C+KP(T <Tipa)— (C+ K — Kr)P(T < tg)
= C+KQiz(d)— (C+ K — Kr)P(T < tg).

APPENDIX 4
Calculation of the cost function

To calculate the cost function ®,(d), we have to calculate P(T < tg), Qtx(d) and Wy, (d).
In the following we will suppress the subscript tg from notation. Let d > 0 be the “control
limit”, Ty = max{tg, min{t: h(¢, Z(t)) > d} — the stopping rule, and 7" = min{7T,T;} — time
to replacement. Define o(t, Z(t)) = h(t, Z(t))I(t > tg). Then Ty = min{t: p(t, Z(t)) > d}.
Let A > 0 be the length of an interval selected for an approximation of the process Z(t), i.e.
Z(s) = Z(iA) = zi,1A < s < (i+1)A,i=0,1,2,..., so that the replacement decision whether
Tat A<t < (i +1)A, depends on t and z;, z;_1,...,21,29. Note that whether 7" > 1A
depends on z;1,...,z1,20. Let pf(0) = P(Z(0) =31, (0,5) < d) = P(Z(0) = i)I((0,5) < d),
and p?(0) = [pf(0)}: be a row vector. Then P(T > 0, Z(0) = i) = P(T > 0, Z(0) = 3,
¢(0,4) < d) = P(Z(0) =1, ¢(0,i) < d) = p?(0). Note it is possible that > pd(0) < 1. Let us
introduce some more notation:

I(l,d) = I(p(s,i) <dforall s,lA<s< (l+1)A),
I(li,z) = I(p(s,i)<dforall s,IA<s<IA+z),0<z<A,
R(l,,A) = P(T >+ DAIT >I1A,z =3)I({,1)
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(+1A
= exp{ -/ h(s,i)ds}[(l,i),
1

A
Rl 2 = PP S IIASal P > TGz =8 (%, o)
lA+x
= exp{ —/ h(s,z‘)ds}](l,i,z), U<z <A,
1A
D, = diag|R(l,i,A)); — diagonal matrix,
Ri(z) = |[R(l,4,x)]i — column vector,
P, = |[pij(l)] — matrix of transition probabilities (2), P, = D, P,
BO = pd(o)y
i = BRE

(a) P(T > jA +z) = B;R;(z),0 < z < A. P(T > jA + z) is obtained by setting d = oo, i.e.
Il q) ="T(l.3,z)=1 for all

Proof:
Let 0 <z < A. Then

Tyt — Slols;Z(s))i< difor'all §,0 < 3.<ig\ + 1) — [Hl(l z,)][(_;,zj,z) and
P(T>jA+2) = ) PT>ib+2,e(s,2(s) <d, 0<s<jA+az0,2,....2)
20,2152
= Z P(T > 3A + x, 20,21, - -+ 2515 (z)
ZGE L yessy z; ;

P(T > 0,¢(0,2) < d,z0) Z HP(T > I+ DA|T > 1A, z)

20,21,00125 1=0

XP(ZH_1|T > (l Sk 1)AZ1)I(1,21)P(T SR IlT > JA, Zj)l(j, Zj,fll)
-1
= PO[[[PP]Ri@) = BR@), i=012...
=0

A A
(b) Let 7; = [ Rj(z)dz = [fR(j,i,z)dz] , be a column vector. Then
° i

o

W(d) =E(T) =) B

i=0
Proof:
i G+1a
E(T) = / P(T>t)dt~2/ P(T > t)dt = Z/ P(T > jA + z)dz
0 ia 0
Z BJ/ Rj(z)dz - ZBJ‘TJ'.
=0 o =0
G+na 0 S

Note that A; = B;7; | 0, because A; = f P(T > t)dt, and P(T > t) is non-increasing

1A
in t. If supsup{t: p(t,7) < d} < oo, e.g. if h(t,Z(t)) — oo, t — 00, such as in the Weibull

L
regression model for 8 > 1, then for some jo > 0, A; = 0, 7 > jo. The calculation can stop
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much earlier, when for some given &, r, = Zj>k+1Aj L ke Let, eg. A v ab™3, a > 0,
b > 1, then rp ~ ijkﬂab’j < In(b)Ax ~ In(Ax_1/Ax)Ax, and calculation can stop when
(In(Ak—1) — In(Ar))Ax < e.

(c) Let F(l,3) = P(IA <T < (I + 1)A, o(s,z1) < d, for all 5,lA < s < T|T > 1A, z = i), and
F, = [F(l,1)], be a column vector. Then

Q) =P(Tu2T)=)_ B;F;.
=0

Proof:

As T is continuous, and T}y is not a function of 7', it is easy to prove that P(Ty = T') = 0. Then

P(Tu>T) = P(Ti>T) :ZP(Td >T,jA<T < (j+1)A)

=0

= Z Z PGA<T<(G+1)A,0(s,Z(s)) <d, s<T, z,...,2;)

3=0 zg,...,2;

e f: Z P(T > jA, zo,...,2;)
3

3=0 29, ...,z

xI(p(s,Z(s)) < d for all 5,0 < s < jJA)F(3,2;)
= LN B
j=0

Note that F'(,7) = 1— R(l,4,z(l,)), where z(l,7) =sup{z:0 <z < A, sup h(y,i)<d}.
IA<u<lA+z

(d) To incorporate the regular maintenance interval tps in the calculation, we need slight

changes in the calculation of B;. Let, for simplicity, A is selected such that for some integer

ko > 1, tapr = koA, so that the maintenance is performed at points nkoA, n = 1,2,... Then

P (mknl— L =CR = el S kg S sl — v Bl LB ity — 0 ) so rthiag

Pn,ko—l &= [R(’nko e l,i,A)JiM,i}.

Notes:

For the Weibull regression model, formulas for R(l,i,A), R(l,%,z), F(l,i) can be further ex-
panded. With an obvious modifications, regarding initial conditions, the presented method
can be used for the calculation of the “remaining life” characteristics, such as E(T|T > jA, z;)
and P(T > t|{T > jA,z;). The method is very convenient for the calculation, because B; is
calculated recursively. It appears from the derivation that the presented method can be applied
to any stopping rule (stopping time) T which is of the “multiplicative” form, i.e.

I(T>J'A+x) e (P;(Zo,zl,..-,Zj,I)
(po(Zo)lpl(zl)...(pjvl(zj_l)goJ'(Zj,I), <z < A, = 0,1,2,... :

Il

The calculation for the stopping rules of other types would be much less convenient in general.
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